EHEC O104 outbreak 2011 in Germany:
What have we learned

Tim Eckmanns
on behalf of the Dept for Infectious Disease Epidemiology,
Robert Koch Institute,
Berlin, Germany

Paris, October 21, 2011
Course of the first days (I)

- Thursday May 19:
 - Phone call from the local health department in Hamburg
 - Official invitation from local authority in Hamburg

- Friday May 20:
 - RKI forwards information to the Federal Centre for Risk Assessment (BfR) and the Ministry of Health (BMG)
 - First team is sent to Hamburg
 - first interviews with patients

- Saturday May 21:
 - First qualitative hints towards vegetables communicated to food safety authorities
 - First case-control study is initiated

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
Course of the first days (II)

- **Sunday May 22:**
 - Analysis of first case-control study
 - First information sent to the European Early Warning and Response System (EWRS) and WHO
 - dpa-Interview: hints about raw vegetables

- **Monday May 23:**
 - Information made available on the Internet
 - Preparation for the second case-control study

- **Tuesday May 24:**
 - First notification within international Health Regulations
 - Second case-control study is initiated

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
Course of the first days (III)

- **Wednesday May 25:**
 - Identification of pathogen by the RKI and consiliar laboratory (STEC O104:H4, Shigatoxin2, ESBL)
 - Press conference with BfR + RKI: results of the second case-control study, recommendation about food consumption

- **Thursday May 26:**
 - Information in English made available on the Internet
 - Scientific publication
 - Epidemiologisches Bulletin
 - Eurosurveillance

Quelle: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
Inter-agency cooperation to identify vehicles and source of the infection

Task Force Food Epi.
- BVL, BfR, RKI, Länder- and EFSA- Experts

EHEC-Risk Management
- BMELV / BMG

Epidemiology Public Health
- Robert Koch-Institut (RKI)

State Public Health

Food

Daily coordination

Länderministerien

Health

Local Government

Local food safety authority

State Public Health

Local economy

Local public health authority

Inspektion

Inspektion
STEC / HUS surveillance

- **Routine Surveillance**
 - **Passive:** STEC infection and „enteropathic“ HUS are statutorily notifiable to local health departments in Germany, and transmitted via states to the RKI
 - **Active:** Surveillance of pediatric HUS in cooperation with German Society of pediatric nephrology (monthly inquiries)

- **Outbreak surveillance**
 - Active Surveillance (daily/weekly) of bloody diarrhea in emergency departments
 - Sentinel surveillance (convenience sample) with laboratories to timely assess the trend in STEC incidence during the outbreak
 - Daily query on treatment capacities in nephrologic clinics
Basic description of the outbreak

(As of 16 August 2011)

<table>
<thead>
<tr>
<th></th>
<th>STEC*</th>
<th>HUS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, (%)</td>
<td>2987 (78)</td>
<td>855 (22)</td>
</tr>
<tr>
<td>Median age [yr]</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>Female [%]</td>
<td>58</td>
<td>68</td>
</tr>
<tr>
<td>Deaths</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>Case-fatality ratio [%]</td>
<td>0.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Hospitalisation [%]</td>
<td>54</td>
<td>100</td>
</tr>
</tbody>
</table>

* STEC O104 or, if serogroup unknown, Stx / stx positive but not Stx1/ stx1 – *only* from 1 May through 4 July

** suspected and confirmed
Reported HUS incidence by age and sex
(Status as of June 17, 2011)

HUS incidence (Cases/100,000 inhabitants) by suspected place of infection (Status as of 3. Sept. 2011)

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
And now live from the Robert Koch Institute the lottery of today's STEC-vehicle
Distribution channels of food enterprise A in Lower Saxony (yellow) to 26 sprout distribution points (black) and 41 clusters (red), STEC / HUS outbreak, Germany, 2011.

Buchholz et al.. New England Journal of Medicine, 2011
Retrospective projection of timing of exposure

Abbildung 6: Rückprojektion der täglichen Erkrankungsbeginne auf Expositionszeitpunkte. Die dünn orangene Kurve Y_t zeigt die tatsächlich beobachteten Erkrankungsbeginne, die dicke blaue Kurve λ_t zeigt die geschätzte Anzahl Expositionen pro Tag (inkl. 95% Konfidenzintervalle).

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
Epidemiological curves at different points in time

Date of onset of illness

Source: Altmann et. al, Emerg Infect Dis. 2011 Oct
Timeline of EHEC outbreak and response

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 9th</td>
<td>Increase in HUS cases from 0-2/d to 9/d</td>
</tr>
<tr>
<td>May 21st</td>
<td>63 HUS cases/day</td>
</tr>
<tr>
<td>May 24th</td>
<td>EHEC telephone hotline of the Germany Society of Nephrology</td>
</tr>
<tr>
<td>May 25th</td>
<td>First HUS patient treated with eculizumab</td>
</tr>
<tr>
<td>May 27th</td>
<td>EHEC-HUS Register online (www.ehec-register.de)</td>
</tr>
<tr>
<td>May 31st</td>
<td>Suggestions of the German Society of Nephrology on the treatment with eculizumab</td>
</tr>
<tr>
<td>June 1st</td>
<td>EHEC-HUS Registry English version (www.ehec-hus.net)</td>
</tr>
<tr>
<td>June 2nd</td>
<td>Complete genome analysis of the outbreak strain available online</td>
</tr>
<tr>
<td>June 9th</td>
<td>Immunoabsorption with protein A columns for HUS patients with severe neurological involvement reported</td>
</tr>
<tr>
<td>June 24th</td>
<td>France reports a cluster of eight patients with bloody diarrhoea, seven have developed HUS,</td>
</tr>
</tbody>
</table>

Fig. 1. Timeline of EHEC outbreak and response.

The German 2011 epidemic of Shiga toxin-producing E. Coli—the nephrological view; The German EHEC-HUS Registry, J. Kielstein, Nephrol Dial Transplant (2011)
Clinic

- **Phase 1**
 - most: bloody diarrhea, some: watery, seldom: no diarrhea

- **Phase 2**
 - 1/3 signs of thrombotic microangiopathy (TMA) 3 – 5 days

- **Phase 3: after another 3 – 10 days**
 - Neurological signs (some patients re-hospitalized) from mild disorientation, qualitative and quantitative alterations of consciousness, double vision, dysphasia, hyperreflexia and apraxia to loss of adverse effects reflexes or repeated epileptic seizures requiring intubation → no neuroradiological signs
 - Majority also psychiatric abnormalities
Eculizumab can be considered if after 0-5 Therapeutic Plasma Exchanges (TPE) in patients with EHEC associated HUS the following criteria are met:

Exclusion criteria

1. Identified to be Shiga toxin (-) or EHEC (-)
2. Previous treatment with eculizumab
3. Pregnancy or lactation
4. Known Complement regulatory mutation or family history
5. Unresolved meningococcal/gonorrhea/pneumococcal infection
6. Unresolved Sepsis

Recommended minimum laboratory parameter

- CBC
- creatinine
- LDH

3 x / week:
- histocytes
- free hemoglobin level
- CRP
- urin-Status (Sgx)

4. Acute Kidn

Def.¹: ≥ 3-facher Kreatininanstieg oder Serum-Kreatinin > 4 mg/dl mit einem akuten Anstieg ≥ 0,5 mg/dl und Urin-Ausscheidung <0,3 ml/kg/h für 24 h oder Anurie für 12 h

5. Venous or arterial thrombembolic events
German Society of Nephrology

- 70 centers
- 483 patients included in HUS-Registry
- Questions:
 - Meaningfullness of therapeutic Plasma Exchange (TPE)
 - Effectiveness of EZULICUMAB
Follow up study in Hamburg and Lübeck

- Right use of antibiotics
 - Basically if
 - Which
 - When
- Risk factors for severe cases
- Long term complications of HUS
Days followed since disease onset and sampling results per carrier by duration of shedding, prospective cohort study part, household study; Shiga-toxin producing *E. coli* outbreak, Germany, 2011.
Conclusion

- **The largest outbreak of HUS worldwide**
 - > 3,800 illnesses, 53 deaths in Germany
 - Regional outbreak with international implications

- **Clinical treatment**
 - Large surge capacity in hospitals
 - Therapeutic Plasma Exchange (TPE)?
 - EZULICUMAB?
 - Antibiotics?

- **Pathogen detection:**
 - Rapid identification of pathogen
 - Most laboratories have only applied shigatoxin-detection
 - So far no detection in untouched food sample
Conclusion

- **Epidemiology**
 - Low potency of transmission
 - Long duration of shedding
 - Only few asymptomatic carriers
 - So far no evidence of endemic establishment

- **Questions**
 - Outbreak France → Link seeds from UK
 - Outbreak Turkey → Link?
 - Source Egypt?

- **Communication**
 - Remains a challenge
Explaining and Proclaiming Uncertainty: Risk Communication Lessons from Germany’s Deadly *E. coli* Outbreak

by Peter M. Sandman and Jody Lanard

Nobody likes uncertainty. Everybody on the receiving end of risk communications prefers those communications to be definitive, not tentative.

In 2004, one of us (Peter) wrote a column entitled “Acknowledging Uncertainty.” It has two main sections: a brief list of tips on how to sound uncertain, and a more complex protocol for “being precise about uncertainty” – for deciding how uncertain you want to sound and then finding words that sound that way. The 2004 column goes into detail about the biases and pressures that lead risk communicators to sound overconfident. But we now think it greatly underestimates the difficulty of successfully communicating uncertainty, as opposed to merely “acknowledging” it – which may get it onto the record but doesn’t necessarily get it into the minds of the audience, where it needs to be.

This column is about the need to proclaim uncertainty, not just acknowledge it.
Abschließende Darstellung und Bewertung der epidemiologischen Erkenntnisse im EHEC O104:H4 Ausbruch Deutschland 2011

Soon available in English

Our special thanks go to ...

- Patients and relatives
- Study participants
- Restaurant owners and cooks
- Doctors and staff in hospitals
- State and local health authorities
- Food safety authorities
- Foreign national health authorities
- ECDC, EFSA, WHO, ...
Back up slides
Microbiological profile

- **Shigatoxin 1:** - (negative)
- **Shigatoxin 2 (vtx2a):** + (positive)
- **Intimin (eae):** - (negative)
- **Enterohemolysin:** - (negative)

- EaggEC virulence plasmid !!
 - **aatA-PCR:** + (positive) (ABC-transporter protein gene)
 - **aggR-PCR:** + (positive) (master regulator gene of Vir-plasmid genes)
 - **aap-PCR:** + (positive) (secreted protein dispersin gene)
 - **aggA-PCR:** + (positive) (AAF/I-fimbral subunit-gene) *
 - **aggC-PCR:** + (positive) (AAF/I-fimbral operon-gene) *

* Fimbriae expressed by O104:H4 strain HUSEC 041 (www.rki.de) (RKI-01-09591) are of type AAF/III (Prager, Fruth, and Tschäpe poster abstract EHEC Workshop 2007).
Reported HUS incidence by age and sex
(Status as of June 17, 2011)

Open questions: epidemiology

- Duration of shedding
- Secondary transmission from human to human
- Risk factors for
 - EHEC Infection
 - HUS
 - Death
- Burden of disease
Similar outbreaks

<table>
<thead>
<tr>
<th></th>
<th>Japan, 1996 EHEC O157 (Radish sprouts)</th>
<th>USA, 2006 EHEC O157 (Spinach)</th>
<th>USA, 2008 S. Saintpaul (Chile shoots)</th>
<th>Deutschland, 2011 EHEC O104 (Sprouts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>~12,000</td>
<td>~210</td>
<td>~1,500</td>
<td>3,842</td>
</tr>
<tr>
<td>Case fatality</td>
<td>3-11</td>
<td>3</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Time from first</td>
<td>>7 weeks</td>
<td>~3 weeks</td>
<td>~4 weeks</td>
<td>~2 weeks</td>
</tr>
<tr>
<td>Infection till</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outbreak detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from identification of outbreak till identification of Source of infection</td>
<td>>4 weeks</td>
<td>~5 days</td>
<td>~7 weeks</td>
<td>~3 weeks</td>
</tr>
<tr>
<td>Duration of outbreak</td>
<td>~12 weeks</td>
<td>~6 weeks</td>
<td>~16 weeks</td>
<td>~8 weeks</td>
</tr>
</tbody>
</table>
Open questions: pathogen

- Origin of the pathogen
 - Reservoir

- Food safety
 - Prevalence of EHEC in raw vegetables
 - Detectability of EHEC in sprouts
The sprout question - "stealth vehicle"

Germany
- Consumption of sprouts was confirmed...
 - First explorative interview: 3/12 (25%) HUS patients
 - All explorative interviews: 17/57 (30%) HUS patients
 - Case-Control-Study 4 (CCS4):
 - 6/24 (25%) HUS/EHEC cases
 - 7/80 (9%) controls
 - Repeated interview with CCS4, after sprouts discussed in the media:
 - 3/8 (38%) re-interviewed cases changed initial answer from “no” to “yes”
 - None of 37 re-interviewed controls changed its initial answer

Denmark
- None of the cases recalled eating sprouts

France
- Cases only remembered sprout consumption in follow-up interviews

Cluster of 3 juvenile HUS cases in Hamburg identified. Local authority invites RKI to investigate

First food alert by BFR/RKI with respect to raw vegetables

Lower Saxony Minister of Agriculture publishes traceback hint to farm A

BfR/BVL/RKI publish specific food warning against sprouts

Abbildung 6: Rückprojektion der täglichen Erkrankungsbeginn auf Expositionszeitpunkte. Die dünne orange Kurve \(\gamma_t \) zeigt die tatsächlich beobachteten Erkrankungsbeginn, die dicke blaue Kurve \(\lambda_t \) zeigt die geschätzte Anzahl Expositionen pro Tag (inkl. 95% Konfidenzintervalle).

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011
Reporting delays
(Date of onset of illness)
County-level incidence
(Cumulative, date of onset of illness)
Proportion of emergency room patients with bloody diarrhea by age and gender (n = 747)

Different scales depicted

Source: RKI. Sachstandsbericht EHEC/HUS O104:H4 Ausbruch, 7.9.2011